Scivias Study
-
Aims of the Study:
- Identification of new biomarkers for the overall assessment of the systemic health status of childrenDevelopment of a novel diagnostic tool in children
Establishment of a normal range for fundus photography, OCT and OCT angiography with regard to retinal changes in various age groups
- Evaluation of the value of optical fundus evaluation in (early) diagnosis of a rare disease
- Establishing a reference range for changes in the transcriptome, metabolome and proteome in various age groups and in various acute and chronic diseases
- Correlation of systems biology data with disease activities of rare diseases
- Specification of phenotyping of patients within different disease groups
-
Scivias Study
Project SummaryEarly detection of diseases is a central challenge for pediatric medicine. The earlier a disease is discovered, the easier it is to avoid complications and sequelae and to reduce long-term morbidity. This is particularly relevant for children with rare diseases in whom the diagnostic process is often delayed. Children with rare and chronic diseases are usually only diagnosed when their disease manifests or complications arise. Thus, there is an urgent need to develop and use new sensitive and specific diagnostic methods, preferably as non-invasive as possible.
Next generation sequencing technologies have revolutionized human genetics. A growing number of hereditary monogenic rare diseases has been identified, leading to a better understanding of molecular processes even in multifactorial diseases. In addition to genomics, other omics-technologies (e.g. transcriptomics, metabolomics, proteomics, immunomics) complement our scientific armamentarium to comprehensively assess states of diseases. A challenge of these technologies is to integrate and interpret these large datasets. Emerging data suggest that combining multi-layer omics data with digital clinical data will allow us to improve diagnostics, to optimize prevention, and to design definitive cures. Advances in machine learning enabling pattern recognition and statistical associations, offer new perspectives for developing innovative and non-invasive diagnostic methods.
In the context of this non-randomized, monocentric observation study, the benefit of using a combination of pattern recognition of image data of the retina by fundus photography and optical coherence tomography (OCT) in combination with the analysis of various OMICS data (genome, transcriptome, proteome and metabolome) will be explored in search of markers for rare and chronic childhood diseases. Retinal images and OMICS data are pseudonymized and subjected to machine learning algorithms. Starting from classical nosological entities, we will compare the data not only within defined groups but also across phenotypes, aiming to shed light on pleiotropic factors. Once associations between genomic and phenotypic data sets become apparent, new hypotheses will be developed and tested in suitable model systems.
Multi-OMICS methodsContent will follow shortly.
A.I. analysisContent will follow shortly.
-
Inquieries only via the official e-mail adress: Scivias.Hauner@med.uni-muenchen.de
Prof. Dr. med. Dr. sci. nat. Christoph KleinStudienleitung/Chefarzt
Dr. med. Katharina DanhauserStellvertretende StudienleitungÜgbzgplugsMguzgfcipvim/faulJrvfiu:yziu; miPD Dr. Claudia PriglingerStellvertretend Studienleitung AugenklinikHägfmlg Pplxälu;xipvimd ful_vfiuydziu-miDr. med. Anna-Lisa LanzOMICs-Labor, LaborleitungFuugVl,cg Vgußvim ful,+vfiuy,ziusmiLarissa MantoanPhD Student
Dr. med. Rebekka Astudillo, DTMIHStudienärztinBijioog-Fcbfmlääüvim-fWulGvfi,uyziu miDr. med. Selina GläserStudienärztinRiälWug Xägicipvim ful_vfiuyWziu-miDominik KnebelWissenschaftlicher Mitarbeiter AugenklinikMüvl;ulo/Üuijiävim-ful_vfiuy,ziusmiDr. Benedikt SchwormWissenschaftlicher Mitarbeiter AugenklinikAiuimldobeRyzéüpvvimsfulhvfiJuyziuemi
Sachiko Kwaschnowitz; M.Sc.Study NurseRgyzJloüsDDÜégcyzuüélbßvimtful_vfiuyz;iuemiKarla StrniscakProjektmitarbeiterin, MFASÜgpägsRbpulcygovim-fulhvfiuyaDziDutmi
Monika ProthmannOMICs-Labor, leitende TAvüulo,geöpübzvgu:uvim ful+vfiuyziu mi
Daniel WeißInformatikerMguliäeUilccvimtful_vfniuyziu mi
Dr. Susanne Pangratz-FuehrerWissenschaftliche Mitarbeiterin, Projekt ManagementRfcguui-PguxpgbßÄfizpipvim fulGvfiuyziu mi
Prof. Dr. med. Dr. sci. nat. Christoph KleinStudienleitung/Chefarzt
Dr. med. Katharina DanhauserStellvertretende StudienleitungÜgbzgYplugeMguzgfcipvime;fulrYvfiuyzinuemiPD Dr. Claudia PriglingerStellvertretend Studienleitung AugenklinikHägJfmlg/Pplxäluxipvimtful_vfiuyziuSemiDr. med. Anna-Lisa LanzOMICs-Labor, LaborleitungFuugVlcgW-Vgußdvim fuJlrvfiuyziu mi
Larissa MantoanStudienärztinVgplccgtOgubüguvimsfulrvfdiuyziu mi
Dr. med. Rebekka Astudillo, DTMIHStudienärztinBijnioogeFacbfSmWlääüvimsful_vfiuyziusmiDr. med. Selina GläserStudienärztinYRiälug/Xägicidpvimtful#vfiuy,ziutmiDominik KnebelWissenschaftlicher Mitarbeiter AugenklinikMüvlulo-Üuijiävimtful_vfiuyziu/miDr. Benedikt SchwormWissenschaftlicher Mitarbeiter AugenklinikAiuimlobeRyzéüpvJ,vim-ful_vfiuyziusmi
Sachiko Kwaschnowitz; M.Sc.Study NurseRgyzloü-Üégcyzuüélbßvimsful_vfiuyziu miKarla StrniscakProjektmitarbeiterin, MFAÜgpäg Rbpulacygovim/ful#vfiuyziu-mi
Monika ProthmannOMICs-Labor, leitende TAvüulogeWöpübzvguuvimeful_vfiuyziuS mi
Daniel WeißInformatikerMguliäsUilccDvimtful_vfiuyziu-mi
Dr. Susanne Pangratz-FuehrerWissenschaftliche Mitarbeiterin, Projekt ManagementRfcguuisPguxpgbßÄfizpipvimsfulnGvfiuyziutmi -
Scivias Study
Dr. von Hauner Children's Hospital, University Hospital LMU Munich
Lindwurmstrasse 4
80337 Munich:aRylqlgc,eZgfuipvi,m-ful_vfiuyziutmi
Thank you to all donors and supporters of the Scivias study
The Scivias study is kindly supported by Eva Mayr-Stihl Stiftung, Carl Zeiss AG and Munich Re, among others.